### metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tris(2,2'-bipyridine- $\kappa^2 N, N'$ )copper(II) bis(tetrafluoridoborate)

## Anne-Christine Chamayou,<sup>a</sup> Chaitali Biswas,<sup>b</sup> Christoph Janiak<sup>a</sup>\* and Ashutosh Ghosh<sup>b</sup>\*

<sup>a</sup>Institut für Anorganische und Analytische Chemie, Universität Freiburg, Albertstrasse 21, D-79104 Freiburg, Germany, and <sup>b</sup>Department of Chemistry, University College of Science and Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700 009, India

Correspondence e-mail: janiak@uni-freiburg.de, ghosh\_59@yahoo.com

Received 6 June 2007; accepted 13 June 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.036; wR factor = 0.088; data-to-parameter ratio = 13.6.

The title compound,  $[Cu(C_{10}H_8N_2)_3](BF_4)_2$ , shows the expected Jahn–Teller distortion at the pseudo-octahedrally coordinated Cu<sup>II</sup> atom. Each Cu<sup>II</sup> complex cation is surrounded by six  $BF_4^-$  anions and each anion by three cations with weak C–H···F hydrogen bonds between them. One of the two  $BF_4^-$  anions exhibits a rotational disorder (0.6:0.4) around one of the B–F bonds.

#### **Related literature**

For related literature, see: Althoff *et al.* (2006); Anderson (1972); Dong *et al.* (2006); Faulmann *et al.* (1998); Janiak *et al.* (1999); Janiak (2000); Juric *et al.* (2006); Liu *et al.* (1991); Majumdar *et al.* (1998); Murphy *et al.* (2006); Nishio (2004); Niu *et al.* (2004); Pavlishchuk *et al.* (1999); Perkins *et al.* (2006); van Albada *et al.* (2004); Yang *et al.* (2004*a,b*); Wu *et al.* (2003).



#### Experimental

 $\begin{array}{ll} Crystal \ data \\ [Cu(C_{10}H_8N_2)_3](BF_4)_2 & b = 10.7810 \ (2) \ \text{\AA} \\ M_r = 705.72 & c = 18.3211 \ (4) \ \text{\AA} \\ \text{Triclinic, $P\overline{1}$} & \alpha = 101.118 \ (1)^\circ \\ a = 7.8633 \ (2) \ \text{\AA} & \beta = 90.750 \ (1)^\circ \end{array}$ 

 $\gamma = 98.091 (1)^{\circ}$   $V = 1507.54 (6) \text{ Å}^3$  Z = 2Mo  $K\alpha$  radiation

#### Data collection

| Bruker APEXII CCD                    |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Sheldrick, 1996)            |
| $T_{\min} = 0.799, T_{\max} = 0.955$ |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.036 & 451 \text{ parameters} \\ wR(F^2) &= 0.088 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} = 0.68 \text{ e } \text{\AA}^{-3} \\ 6145 \text{ reflections} & \Delta\rho_{\text{min}} = -0.30 \text{ e } \text{\AA}^{-3} \end{split}$$

 $\mu = 0.81 \text{ mm}^{-1}$ 

T = 203 (2) K

 $R_{\rm int} = 0.081$ 

 $0.29 \times 0.09 \times 0.06 \text{ mm}$ 

35533 measured reflections

6145 independent reflections 4809 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Selected geometric parameters (Å, °).

| Cu-N4    | 2.0144 (16) | Cu-N1    | 2.0347 (15) |
|----------|-------------|----------|-------------|
| Cu-N2    | 2.0309 (16) | Cu-N3    | 2.2388 (16) |
| Cu-N6    | 2.0313 (16) | Cu-N5    | 2.4506 (16) |
|          |             |          |             |
| N4-Cu-N2 | 174.08 (6)  | N6-Cu-N3 | 101.71 (6)  |
| N4-Cu-N6 | 91.04 (6)   | N1-Cu-N3 | 91.97 (6)   |
| N2-Cu-N6 | 94.81 (6)   | N4-Cu-N5 | 99.13 (6)   |
| N4-Cu-N1 | 94.04 (6)   | N2-Cu-N5 | 83.42 (6)   |
| N2-Cu-N1 | 80.47 (6)   | N6-Cu-N5 | 74.14 (6)   |
| N6-Cu-N1 | 166.16 (6)  | N1-Cu-N5 | 92.33 (6)   |
| N4-Cu-N3 | 77.31 (7)   | N3-Cu-N5 | 174.61 (6)  |
| N2-Cu-N3 | 100.51 (6)  |          |             |

| Table 2       |            |     |     |
|---------------|------------|-----|-----|
| Hydrogen-bond | geometry ( | (Å, | °). |

| $D - H \cdots A$           | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------|------|-------------------------|--------------|---------------------------|
| $C3-H3A\cdots F2^{i}$      | 0.94 | 2.54                    | 3.342 (3)    | 144                       |
| $C8-H8A\cdots F2^{ii}$     | 0.94 | 2.35                    | 3.274 (3)    | 169                       |
| $C10-H10A\cdots F6B^{iii}$ | 0.94 | 2.49                    | 3.376 (4)    | 158                       |
| $C13-H13A\cdots F8B^{iv}$  | 0.94 | 2.17                    | 3.063 (5)    | 158                       |
| $C26-H26A\cdots F4$        | 0.94 | 2.31                    | 3.191 (3)    | 155                       |
| $C27 - H27A \cdots F1$     | 0.94 | 2.54                    | 3.303 (3)    | 138                       |

Symmetry codes: (i) x + 1, y - 1, z; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) -x, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Crystal Impact, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2007).

Support through DFG grant Ja466/14–1 is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2177).

#### References

- Albada, G. A. van, Mohamadou, A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2004). *Eur. J. Inorg. Chem.* pp. 3733–3742.
- Althoff, G., Ruiz, J., Rodríguez, V., López, G., Pérez, J. & Janiak, C. (2006). CrystEngComm, 8, 662–665.
- Anderson, O. P. (1972). J. Chem. Soc. Dalton Trans. pp. 2597-2601.

- Bruker (2006). APEX2 (Version 2.1-0) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Crystal Impact (2006). *DIAMOND* (Version 3.1e). Crystal Impact GbR, Bonn, Germany.
- Dong, D., Peng, J., Chen, Y., Kong, Y., Tian, A., Liu, H. & Sha, J. (2006). J. Mol. Struct. 788, 200–205.
- Faulmann, C., Veldhuizen, Y. S. J., Haasnoot, J. G., Reedijk, J. & Cassoux, P. (1998). Acta Cryst. C54, 1827–1830.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Janiak, C., Deblon, S., Wu, H.-P., Kolm, M. J., Klüfers, P., Piotrowski, H. & Mayer, P. (1999). Eur. J. Inorg. Chem. pp. 1507–1521.
- Jurie, M., Planinic, P., Brnicevic, N., Milic, D., Matkovic-Calogovic, D., Pajic, D. & Zadro, K. (2006). Eur. J. Inorg. Chem. pp. 2701–2710.
- Liu, Z.-M., Jiang, Z.-H., Liao, D.-Z., Yao, X.-K. & Wang, H.-G. (1991). Polyhedron, 10, 101–102.
- Majumdar, P., Gosh, A. K., Falvello, L. R., Peng, S.-M. & Goswami, S. (1998). Inorg. Chem. 37, 1651–1654.

- Murphy, B., Aljabri, M., Ahmed, A. M., Murphy, G., Hathaway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). *Dalton Trans.* pp. 357–367. Nishio, M. (2004). *CrystEngComm*, 6, 130–158.
- Niu, J., Wang, Z. & Wang, J. (2004). J. Coord. Chem. 57, 411-416.
- Pavlishchuk, V. V., Kalaida, A. V. & Goreshnik, E. A. (1999). Russ. J. Coord. Chem. 25, 507–510.
- Perkins, D. F., Lindoy, L. F., McAuley, A., Meehan, G. V. & Turner, P. (2006). Proc. Natl Acad. Sci. USA, 103, 532–537.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.
- Wu, B., Yang, X.-J., Janiak, C. & Lassahn, P. G. (2003). Chem. Commun. pp. 902–903.
- Yang, X.-J., Wu, B. & Janiak, C. (2004a). CrystEngComm, 6, 126-129.
- Yang, X.-J., Wu, B. & Janiak, C. (2004b). Z. Anorg. Allg. Chem. 630, 1564– 1572.

Acta Cryst. (2007). E63, m1936-m1937 [doi:10.1107/S1600536807028863]

### Tris(2,2'-bipyridine- $\kappa^2 N, N'$ )copper(II) bis(tetrafluoridoborate)

#### A.-C. Chamayou, C. Biswas, C. Janiak and A. Ghosh

#### Comment

Metal complexes with three (modified) 2,2'-bipyridine ligands are of continous interest (Janiak *et al.*, 1999; Wu *et al.*, 2003; Yang *et al.*, 2004*a*,b). Tris(2,2'-bipyridine)copper structure are known with the anions tris(oxalato)chromate(III) (Juric *et al.*, 2006), polyoxovanadate (Dong *et al.*, 2006), polyoxotungstate (Niu *et al.*, 2004), bis(bis(2-thioxo-1,3-dithiole-4,5-dithiolato)- nickelate(II) (Faulmann *et al.*, 1998), tetraphenylborate (Murphy *et al.*, 2006) and perchlorate (Anderson, 1972; Liu *et al.*, 1991; Majumdar *et al.*, 1998; Pavlishchuk *et al.*, 1999). The closely related tris(5,5'-dimethyl-2,2'-bipyridine)copper(II) complexes have been reported as the hexafluorophosphate (Perkins *et al.*, 2006) and tetrafluoroborate salt (van Albada *et al.*, 2004).

The asymmetric unit of the title complex is shown in Fig. 1. The cation-anion packing view projected onto the *bc* plane is given in Fig. 2. Bond lengths and angles in the title complex (Table 1) are as expected from the related  $[Cu(2,2'-bipy)_3]$ -compounds with other anions. The crystal packing is primarily governed by the electrostatic cation-anion interaction and separation. Some weak C—H…F interactions from the bipyridine to the BF<sub>4</sub>-anion can be discerned (Althoff *et al.*, 2006). No relevant  $\pi$ — $\pi$  or C—H… $\pi$  interactions were found (Janiak, 2000; Nishio, 2004).

Noteworthy, the long Cu<sup>...</sup>N5 distortion apparently leads to a sizable tilt angle between the pyridyl ring planes of N5 and N6 of  $32.1 (1)^{\circ}$ , while the other two ring planes show tilt angles of  $14.5 (1)^{\circ} (N1,N2)$  or  $11.0 (1)^{\circ} (N3,N4)$ .

#### **Experimental**

A methanol solution (30 ml) of Cu(BF<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (5 mmol, 1.726 g) was mixed with *L*-glutamic acid (5 mmol, 0.781 g) and the mixture was warmed on a water bath for 5 minutes. The resulting blue solution was added to a methanol solution (10 ml) of 2,2'-bipyridine (5 mmol, 0.780 g). The dark blue solution was stirred for 15 min. Blue crystals were obtained by slow evaporation of the mother liquor after two days. The crystals were analyzed as the title compound. For a direct preparation an aqueous solution (10 ml) of Cu(BF<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (2 mmol, 0.690 g) was mixed with a methanol solution (5 ml) of 2,2'-bipyridine (6 mmol, 0.937 g) and the mixture was refluxed for approximately 2 h. After two days at room temperature long light blue crystals were obtained (yield 68%). Analysis calculated for C<sub>30</sub>H<sub>24</sub>CuB<sub>2</sub>F<sub>8</sub>N<sub>6</sub> (705.72): C 51.06, H 3.43, N 11.91%; found: C 51.30, H, 3.15, N 11.73%.

#### Refinement

H atoms were positioned geometrically (C—H = 0.94 Å) and refined using a riding model (AFIX 43), with  $U_{iso}(H) = 1.2U_{eq}(C)$ . The disordered F atoms on B2 were refined anisotropically by assigning them to different PART numbers of a disordered group. The atoms of PART 1 (F6A, F7A and F8) were found to have an occupation factor (sof) of 0.4. The atoms of PART 2 (F6B, F7B, F8B) had an occupation factor of 0.6. These occupation factors were initially found upon refinement and then fixed in subsequent refinement cycles.

Figures



Fig. 1. : Asymmetric unit of  $[Cu(2,2'-bipy)_3](BF_4)_2$ , also showing the rotational disorder of one BF<sub>4</sub> anion.

Fig. 2. : Crystal packing projected onto the *bc* plane, illustrating the cation-anion separation.

### Tris(2,2'-bipyridine- $\kappa^2 N$ ,N')copper(II) bis(tetrafluoridoborate)

| $[Cu(C_{10}H_8N_2)_3](BF_4)_2$   | Z=2                                          |
|----------------------------------|----------------------------------------------|
| $M_r = /05./2$                   | $F_{000} = /14$                              |
| Triclinic, $P\overline{1}$       | $D_{\rm x} = 1.555 {\rm ~Mg~m}^{-3}$         |
| a = 7.8633 (2) Å                 | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| b = 10.7810 (2)  Å               | Cell parameters from 9932 reflections        |
| c = 18.3211 (4)  Å               | $\theta = 4.9 - 57.9^{\circ}$                |
| $\alpha = 101.118 \ (1)^{\circ}$ | $\mu = 0.81 \text{ mm}^{-1}$                 |
| $\beta = 90.750 \ (1)^{\circ}$   | T = 203 (2)  K                               |
| $\gamma = 98.091 \ (1)^{\circ}$  | Needle, blue                                 |
| V = 1507.54 (6) Å <sup>3</sup>   | $0.29 \times 0.09 \times 0.06 \text{ mm}$    |

Data collection

| Bruker APEXII CCD<br>diffractometer                         | 6145 independent reflections           |
|-------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                    | 4809 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                     | $R_{\rm int} = 0.081$                  |
| T = 203(2)  K                                               | $\theta_{\rm max} = 26.4^{\circ}$      |
| ω scans                                                     | $\theta_{\min} = 2.0^{\circ}$          |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | $h = -9 \rightarrow 9$                 |
| $T_{\min} = 0.799, \ T_{\max} = 0.955$                      | $k = -13 \rightarrow 13$               |
| 35533 measured reflections                                  | <i>l</i> = −22→22                      |
|                                                             |                                        |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.088$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0432P)^2 + 0.2354P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.06                                        | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 6145 reflections                                       | $\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$                               |
| 451 parameters                                         | $\Delta \rho_{min} = -0.30 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

#### Special details

methods

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement par | rameters ( $Å^2$ ) |
|--------------------------------------------------------------------------------------|--------------------|
|--------------------------------------------------------------------------------------|--------------------|

|     | x           | У            | Ζ             | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|-----|-------------|--------------|---------------|-------------------------------|-----------|
| Cu  | 0.49641 (3) | 0.26662 (2)  | 0.259958 (10) | 0.02981 (9)                   |           |
| N1  | 0.6154 (2)  | 0.14377 (15) | 0.18640 (7)   | 0.0324 (4)                    |           |
| N2  | 0.6720 (2)  | 0.39431 (15) | 0.22253 (7)   | 0.0323 (4)                    |           |
| N3  | 0.6455 (2)  | 0.23049 (16) | 0.35676 (8)   | 0.0362 (4)                    |           |
| N4  | 0.3385 (2)  | 0.12645 (15) | 0.29363 (8)   | 0.0351 (4)                    |           |
| N5  | 0.3100 (2)  | 0.30720 (16) | 0.16155 (8)   | 0.0356 (4)                    |           |
| N6  | 0.3548 (2)  | 0.39973 (15) | 0.31069 (7)   | 0.0317 (4)                    |           |
| C1  | 0.5892 (3)  | 0.0164 (2)   | 0.17581 (10)  | 0.0410 (5)                    |           |
| H1A | 0.5004      | -0.0236      | 0.2009        | 0.049*                        |           |
| C2  | 0.6876 (3)  | -0.0589 (2)  | 0.12940 (11)  | 0.0506 (6)                    |           |
| H2A | 0.6664      | -0.1484      | 0.1233        | 0.061*                        |           |
| C3  | 0.8163 (3)  | -0.0012 (3)  | 0.09252 (12)  | 0.0569 (7)                    |           |
| H3A | 0.8854      | -0.0507      | 0.0610        | 0.068*                        |           |
| C4  | 0.8438 (3)  | 0.1303 (2)   | 0.10199 (11)  | 0.0507 (6)                    |           |
| H4A | 0.9316      | 0.1713       | 0.0769        | 0.061*                        |           |
| C5  | 0.7400 (3)  | 0.2015 (2)   | 0.14913 (9)   | 0.0354 (5)                    |           |
| C6  | 0.7582 (3)  | 0.3416 (2)   | 0.16347 (9)   | 0.0355 (5)                    |           |
| C7  | 0.8520 (3)  | 0.4170 (2)   | 0.12031 (10)  | 0.0489 (6)                    |           |

| H7A         | 0.9077               | 0.3790              | 0.0786                 | 0.059*          |
|-------------|----------------------|---------------------|------------------------|-----------------|
| C8          | 0.8627 (3)           | 0.5479 (3)          | 0.13910 (12)           | 0.0543 (6)      |
| H8A         | 0.9243               | 0.6002              | 0.1100                 | 0.065*          |
| C9          | 0.7822 (3)           | 0.6010 (2)          | 0.20101 (12)           | 0.0489 (6)      |
| H9B         | 0.7917               | 0.6903              | 0.2158                 | 0.059*          |
| C10         | 0.6867 (3)           | 0.5218 (2)          | 0.24154 (11)           | 0.0397 (5)      |
| H10A        | 0.6307               | 0.5587              | 0.2835                 | 0.048*          |
| C11         | 0.1779 (3)           | 0.0876 (2)          | 0.26544 (11)           | 0.0454 (5)      |
| H11A        | 0.1367               | 0.1283              | 0.2292                 | 0.055*          |
| C12         | 0.0703 (3)           | -0.0097 (2)         | 0.28738 (12)           | 0.0560 (6)      |
| H12A        | -0.0427              | -0.0343             | 0.2671                 | 0.067*          |
| C13         | 0.1320 (4)           | -0.0700 (2)         | 0.33951 (13)           | 0.0621 (7)      |
| H13A        | 0.0619               | -0.1370             | 0.3554                 | 0.074*          |
| C14         | 0.2974 (4)           | -0.0314 (2)         | 0.36820 (11)           | 0.0552 (7)      |
| H14A        | 0.3413               | -0.0731             | 0.4033                 | 0.066*          |
| C15         | 0.3999 (3)           | 0.06876 (18)        | 0.34562 (9)            | 0.0391 (5)      |
| C16         | 0.5772 (3)           | 0.12056 (19)        | 0.37568 (9)            | 0.0390 (5)      |
| C17         | 0.6688 (4)           | 0.0604 (2)          | 0.42061 (11)           | 0.0513 (6)      |
| H17A        | 0.6200               | -0.0173             | 0.4329                 | 0.062*          |
| C18         | 0.8314 (4)           | 0.1164 (3)          | 0.44662 (12)           | 0.0572 (7)      |
| H18A        | 0.8949               | 0.0773              | 0.4771                 | 0.069*          |
| C19         | 0.9016 (3)           | 0.2303 (2)          | 0.42800 (11)           | 0.0515 (6)      |
| H19A        | 1 0126               | 0 2701              | 0 4455                 | 0.062*          |
| C20         | 0.8033 (3)           | 0.2841(2)           | 0 38278 (10)           | 0.0436 (5)      |
| H20A        | 0.8499               | 0.3617              | 0.3698                 | 0.052*          |
| C21         | 0 2698 (3)           | 0 46343 (18)        | 0 26934 (9)            | 0.0335 (4)      |
| C22         | 0.1715 (3)           | 0.5548(2)           | 0.30129 (11)           | 0.0462 (5)      |
| H22A        | 0.1144               | 0.5991              | 0.2715                 | 0.055*          |
| C23         | 0.1587 (3)           | 0.5800(2)           | 0.37805 (11)           | 0.0517(6)       |
| H23A        | 0.0922               | 0.6414              | 0.4009                 | 0.062*          |
| C24         | 0.0922<br>0.2440 (3) | 0.5144(2)           | 0.42011(10)            | 0.002           |
| H24A        | 0.2360               | 0.5298              | 0.4721                 | 0.054*          |
| C25         | 0.3416 (3)           | 0.3256 (2)          | 0.38535 (9)            | 0.0375(5)       |
| H25A        | 0.5410 (5)           | 0.4250 (2)          | 0.38555 ()             | 0.0373 (3)      |
| C26         | 0.4010<br>0.2875 (3) | 0.5170 (2)          | 0.4145<br>0.14170 (10) | 0.045           |
| U20         | 0.2875 (5)           | 0.5179 (2)          | 0.14170 (10)           | 0.0401 (3)      |
| H20A        | 0.2720               | 0.0020<br>0.4792(2) | 0.1010                 | $0.046^{\circ}$ |
| U27         | 0.3104 (3)           | 0.4763 (2)          | 0.00385 (11)           | 0.0402 (3)      |
| C29         | 0.3122               | 0.3303              | 0.0333                 | $0.033^{\circ}$ |
|             | 0.3300 (3)           | 0.3330 (2)          | 0.03931 (10)           | 0.0434 (3)      |
| П28А<br>С20 | 0.3433               | 0.3240              | -0.0118                | 0.034           |
| C29         | 0.3300 (3)           | 0.2709 (2)          | 0.08831 (10)           | 0.0405 (5)      |
| H29A        | 0.3447               | 0.1857              | 0.0695                 | 0.049*          |
| C30         | 0.28/6(2)            | 0.42833 (19)        | 0.186/4 (9)            | 0.0321(4)       |
| DI<br>E1    | 0.2109(4)            | 0.6207(2)           | 0.08400 (13)           | 0.0475(0)       |
|             | 0.3390 (2)           | 0.77001(10)         | 0.04220 (9)            | 0.0/50(5)       |
| F2          | 0.05285 (19)         | 0.76224 (13)        | 0.05089 (7)            | 0.0608 (4)      |
| F 3         | 0.21961 (19)         | 0.95517 (12)        | 0.08408 (7)            | 0.05/7 (4)      |
| F4          | 0.2248 (3)           | 0.80748 (14)        | 0.15576 (7)            | 0.0805 (5)      |
| В2          | 0.3042 (3)           | 0.2767 (2)          | 0.57012 (12)           | 0.0416 (6)      |

| F5  | 0.2891 (2)  | 0.40217 (15) | 0.57208 (9)  | 0.0755 (5)  |      |
|-----|-------------|--------------|--------------|-------------|------|
| F6A | 0.3457 (11) | 0.2434 (5)   | 0.6377 (3)   | 0.103 (3)   | 0.40 |
| F7A | 0.4247 (8)  | 0.2392 (6)   | 0.5222 (4)   | 0.097 (2)   | 0.40 |
| F8A | 0.1552 (8)  | 0.1886 (6)   | 0.5459 (4)   | 0.099 (2)   | 0.40 |
| F6B | 0.4403 (5)  | 0.2725 (4)   | 0.6134 (2)   | 0.0805 (12) | 0.60 |
| F7B | 0.3161 (7)  | 0.2142 (5)   | 0.50027 (17) | 0.1027 (16) | 0.60 |
| F8B | 0.1604 (5)  | 0.2332 (4)   | 0.5983 (3)   | 0.1105 (16) | 0.60 |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| Cu  | 0.03426 (15) | 0.02520 (13) | 0.03177 (11) | 0.00620 (10) | 0.00703 (9)  | 0.00832 (8)  |
| N1  | 0.0350 (10)  | 0.0322 (9)   | 0.0305 (6)   | 0.0084 (7)   | 0.0020 (6)   | 0.0053 (6)   |
| N2  | 0.0315 (9)   | 0.0327 (9)   | 0.0338 (7)   | 0.0015 (7)   | -0.0009 (6)  | 0.0116 (6)   |
| N3  | 0.0471 (11)  | 0.0314 (9)   | 0.0332 (7)   | 0.0103 (8)   | 0.0042 (7)   | 0.0108 (6)   |
| N4  | 0.0413 (11)  | 0.0275 (9)   | 0.0374 (7)   | 0.0060 (8)   | 0.0106 (7)   | 0.0073 (6)   |
| N5  | 0.0382 (10)  | 0.0329 (9)   | 0.0358 (7)   | 0.0054 (8)   | -0.0022 (7)  | 0.0072 (6)   |
| N6  | 0.0346 (9)   | 0.0276 (9)   | 0.0333 (7)   | 0.0062 (7)   | 0.0036 (6)   | 0.0060 (6)   |
| C1  | 0.0488 (14)  | 0.0369 (12)  | 0.0385 (9)   | 0.0126 (10)  | 0.0031 (9)   | 0.0057 (8)   |
| C2  | 0.0652 (17)  | 0.0406 (13)  | 0.0471 (10)  | 0.0237 (12)  | -0.0017 (11) | 0.0003 (9)   |
| C3  | 0.0567 (16)  | 0.0674 (18)  | 0.0480 (11)  | 0.0321 (14)  | 0.0063 (11)  | -0.0022 (11) |
| C4  | 0.0393 (13)  | 0.0699 (17)  | 0.0436 (10)  | 0.0148 (12)  | 0.0114 (9)   | 0.0076 (10)  |
| C5  | 0.0298 (11)  | 0.0486 (12)  | 0.0296 (7)   | 0.0096 (9)   | -0.0003 (7)  | 0.0090 (8)   |
| C6  | 0.0272 (11)  | 0.0484 (13)  | 0.0314 (8)   | 0.0016 (9)   | -0.0012 (7)  | 0.0122 (8)   |
| C7  | 0.0403 (13)  | 0.0667 (16)  | 0.0397 (9)   | -0.0062 (12) | 0.0034 (9)   | 0.0204 (10)  |
| C8  | 0.0478 (15)  | 0.0636 (17)  | 0.0539 (11)  | -0.0126 (12) | -0.0048 (10) | 0.0330 (11)  |
| C9  | 0.0442 (14)  | 0.0379 (12)  | 0.0645 (12)  | -0.0063 (11) | -0.0150 (11) | 0.0199 (10)  |
| C10 | 0.0373 (12)  | 0.0354 (12)  | 0.0470 (9)   | 0.0006 (9)   | -0.0055 (9)  | 0.0132 (8)   |
| C11 | 0.0485 (14)  | 0.0379 (12)  | 0.0482 (10)  | 0.0035 (11)  | 0.0108 (10)  | 0.0058 (9)   |
| C12 | 0.0567 (16)  | 0.0459 (14)  | 0.0581 (12)  | -0.0090 (12) | 0.0134 (11)  | 0.0033 (10)  |
| C13 | 0.076 (2)    | 0.0440 (14)  | 0.0608 (13)  | -0.0149 (13) | 0.0203 (13)  | 0.0121 (11)  |
| C14 | 0.082 (2)    | 0.0408 (13)  | 0.0459 (10)  | 0.0038 (13)  | 0.0152 (11)  | 0.0188 (9)   |
| C15 | 0.0572 (14)  | 0.0269 (10)  | 0.0346 (8)   | 0.0085 (10)  | 0.0158 (9)   | 0.0072 (7)   |
| C16 | 0.0556 (15)  | 0.0344 (11)  | 0.0313 (8)   | 0.0154 (10)  | 0.0138 (8)   | 0.0099 (7)   |
| C17 | 0.0686 (18)  | 0.0457 (14)  | 0.0507 (11)  | 0.0240 (13)  | 0.0144 (11)  | 0.0251 (10)  |
| C18 | 0.0683 (19)  | 0.0680 (17)  | 0.0495 (11)  | 0.0368 (15)  | 0.0094 (11)  | 0.0269 (11)  |
| C19 | 0.0518 (15)  | 0.0650 (16)  | 0.0429 (10)  | 0.0210 (13)  | 0.0015 (10)  | 0.0144 (10)  |
| C20 | 0.0500 (15)  | 0.0440 (13)  | 0.0385 (9)   | 0.0088 (11)  | 0.0007 (9)   | 0.0107 (8)   |
| C21 | 0.0329 (11)  | 0.0309 (10)  | 0.0366 (8)   | 0.0065 (9)   | 0.0008 (8)   | 0.0052 (7)   |
| C22 | 0.0461 (14)  | 0.0461 (13)  | 0.0483 (10)  | 0.0203 (11)  | -0.0029 (9)  | 0.0046 (9)   |
| C23 | 0.0513 (15)  | 0.0514 (14)  | 0.0517 (11)  | 0.0233 (12)  | 0.0061 (10)  | -0.0036 (10) |
| C24 | 0.0497 (14)  | 0.0462 (13)  | 0.0372 (9)   | 0.0125 (11)  | 0.0082 (9)   | 0.0004 (9)   |
| C25 | 0.0398 (12)  | 0.0376 (11)  | 0.0355 (8)   | 0.0053 (9)   | 0.0045 (8)   | 0.0082 (8)   |
| C26 | 0.0428 (13)  | 0.0332 (11)  | 0.0464 (9)   | 0.0099 (10)  | -0.0024 (9)  | 0.0097 (8)   |
| C27 | 0.0496 (14)  | 0.0498 (14)  | 0.0446 (10)  | 0.0083 (11)  | 0.0005 (9)   | 0.0216 (9)   |
| C28 | 0.0494 (14)  | 0.0519 (14)  | 0.0344 (8)   | 0.0071 (11)  | -0.0007 (9)  | 0.0077 (9)   |
| C29 | 0.0457 (13)  | 0.0370 (12)  | 0.0367 (8)   | 0.0078 (10)  | -0.0033 (8)  | 0.0013 (8)   |
| C30 | 0.0270 (11)  | 0.0324 (11)  | 0.0368 (8)   | 0.0057 (8)   | -0.0022 (7)  | 0.0062 (7)   |

| B1  | 0.0596 (18) | 0.0304 (13) | 0.0518 (12) | 0.0077 (12) | -0.0008 (12) | 0.0069 (10)  |
|-----|-------------|-------------|-------------|-------------|--------------|--------------|
| F1  | 0.0628 (11) | 0.0641 (11) | 0.0981 (11) | 0.0240 (9)  | 0.0108 (8)   | 0.0003 (8)   |
| F2  | 0.0574 (9)  | 0.0529 (9)  | 0.0687 (8)  | -0.0077 (7) | 0.0027 (7)   | 0.0154 (7)   |
| F3  | 0.0666 (10) | 0.0331 (7)  | 0.0749 (8)  | 0.0067 (7)  | 0.0047 (7)   | 0.0149 (6)   |
| F4  | 0.1436 (17) | 0.0460 (9)  | 0.0540 (7)  | 0.0211 (10) | -0.0122 (9)  | 0.0108 (6)   |
| B2  | 0.0395 (15) | 0.0437 (15) | 0.0414 (10) | 0.0055 (12) | -0.0028 (10) | 0.0091 (10)  |
| F5  | 0.0962 (13) | 0.0488 (9)  | 0.0854 (9)  | 0.0195 (9)  | -0.0092 (9)  | 0.0170 (8)   |
| F6A | 0.209 (9)   | 0.056 (4)   | 0.047 (2)   | 0.057 (4)   | -0.040 (4)   | -0.008 (2)   |
| F7A | 0.084 (4)   | 0.084 (4)   | 0.116 (5)   | 0.009 (4)   | 0.064 (4)    | 0.003 (4)    |
| F8A | 0.075 (4)   | 0.072 (4)   | 0.147 (5)   | -0.023 (3)  | -0.056 (5)   | 0.046 (4)    |
| F6B | 0.064 (2)   | 0.063 (2)   | 0.114 (3)   | 0.0096 (17) | -0.045 (2)   | 0.021 (2)    |
| F7B | 0.159 (5)   | 0.103 (3)   | 0.0495 (14) | 0.061 (4)   | 0.004 (2)    | -0.0062 (16) |
| F8B | 0.051 (2)   | 0.096 (3)   | 0.206 (5)   | 0.010 (2)   | 0.051 (3)    | 0.079 (3)    |
|     |             |             |             |             |              |              |

### Geometric parameters (Å, °)

| Cu—N4  | 2.0144 (16) | C13—H13A | 0.9400    |
|--------|-------------|----------|-----------|
| Cu—N2  | 2.0309 (16) | C14—C15  | 1.387 (3) |
| Cu—N6  | 2.0313 (16) | C14—H14A | 0.9400    |
| Cu—N1  | 2.0347 (15) | C15—C16  | 1.483 (3) |
| Cu—N3  | 2.2388 (16) | C16—C17  | 1.392 (3) |
| Cu—N5  | 2.4506 (16) | C17—C18  | 1.372 (4) |
| N1—C1  | 1.335 (3)   | C17—H17A | 0.9400    |
| N1—C5  | 1.350 (2)   | C18—C19  | 1.380 (3) |
| N2-C10 | 1.339 (3)   | C18—H18A | 0.9400    |
| N2—C6  | 1.358 (2)   | C19—C20  | 1.383 (3) |
| N3—C20 | 1.333 (3)   | C19—H19A | 0.9400    |
| N3—C16 | 1.341 (3)   | C20—H20A | 0.9400    |
| N4—C11 | 1.337 (3)   | C21—C22  | 1.383 (3) |
| N4—C15 | 1.352 (3)   | C21—C30  | 1.501 (2) |
| N5-C30 | 1.336 (2)   | C22—C23  | 1.388 (3) |
| N5—C29 | 1.341 (2)   | C22—H22A | 0.9400    |
| N6-C21 | 1.345 (3)   | C23—C24  | 1.369 (3) |
| N6-C25 | 1.351 (2)   | C23—H23A | 0.9400    |
| C1—C2  | 1.381 (3)   | C24—C25  | 1.377 (3) |
| C1—H1A | 0.9400      | C24—H24A | 0.9400    |
| C2—C3  | 1.368 (4)   | C25—H25A | 0.9400    |
| C2—H2A | 0.9400      | C26—C30  | 1.386 (3) |
| C3—C4  | 1.380 (4)   | C26—C27  | 1.395 (3) |
| С3—НЗА | 0.9400      | C26—H26A | 0.9400    |
| C4—C5  | 1.393 (3)   | C27—C28  | 1.370 (3) |
| C4—H4A | 0.9400      | C27—H27A | 0.9400    |
| С5—С6  | 1.468 (3)   | C28—C29  | 1.382 (3) |
| С6—С7  | 1.387 (3)   | C28—H28A | 0.9400    |
| С7—С8  | 1.377 (3)   | C29—H29A | 0.9400    |
| С7—Н7А | 0.9400      | B1—F4    | 1.374 (3) |
| С8—С9  | 1.373 (3)   | B1—F3    | 1.377 (3) |
| C8—H8A | 0.9400      | B1—F1    | 1.386 (3) |
| C9—C10 | 1.387 (3)   | B1—F2    | 1.404 (3) |
|        |             |          |           |

| С9—Н9В     | 0.9400      | B2—F8B       | 1.313 (4)   |
|------------|-------------|--------------|-------------|
| C10—H10A   | 0.9400      | B2—F6B       | 1.334 (4)   |
| C11—C12    | 1.379 (3)   | B2—F7B       | 1.337 (4)   |
| C11—H11A   | 0.9400      | B2—F7A       | 1.351 (5)   |
| C12—C13    | 1.373 (4)   | B2—F5        | 1.368 (3)   |
| C12—H12A   | 0.9400      | B2—F6A       | 1.402 (5)   |
| C13—C14    | 1.373 (4)   | B2—F8A       | 1.409 (6)   |
| N4—Cu—N2   | 174.08 (6)  | C12—C13—H13A | 120.3       |
| N4—Cu—N6   | 91.04 (6)   | C13—C14—C15  | 120.3 (2)   |
| N2—Cu—N6   | 94.81 (6)   | C13—C14—H14A | 119.8       |
| N4—Cu—N1   | 94.04 (6)   | C15—C14—H14A | 119.8       |
| N2—Cu—N1   | 80.47 (6)   | N4—C15—C14   | 119.9 (2)   |
| N6—Cu—N1   | 166.16 (6)  | N4—C15—C16   | 115.94 (17) |
| N4—Cu—N3   | 77.31 (7)   | C14—C15—C16  | 124.2 (2)   |
| N2—Cu—N3   | 100.51 (6)  | N3—C16—C17   | 121.4 (2)   |
| N6—Cu—N3   | 101.71 (6)  | N3—C16—C15   | 115.58 (18) |
| N1—Cu—N3   | 91.97 (6)   | C17—C16—C15  | 123.0 (2)   |
| N4—Cu—N5   | 99.13 (6)   | C18—C17—C16  | 118.8 (2)   |
| N2—Cu—N5   | 83.42 (6)   | С18—С17—Н17А | 120.6       |
| N6—Cu—N5   | 74.14 (6)   | С16—С17—Н17А | 120.6       |
| N1—Cu—N5   | 92.33 (6)   | C17—C18—C19  | 120.0 (2)   |
| N3—Cu—N5   | 174.61 (6)  | C17—C18—H18A | 120.0       |
| C1—N1—C5   | 119.01 (17) | C19—C18—H18A | 120.0       |
| C1—N1—Cu   | 126.67 (13) | C18—C19—C20  | 117.9 (2)   |
| C5—N1—Cu   | 114.18 (13) | С18—С19—Н19А | 121.0       |
| C10—N2—C6  | 118.84 (17) | С20—С19—Н19А | 121.0       |
| C10—N2—Cu  | 126.24 (13) | N3—C20—C19   | 122.8 (2)   |
| C6—N2—Cu   | 113.80 (13) | N3—C20—H20A  | 118.6       |
| C20—N3—C16 | 119.03 (18) | C19—C20—H20A | 118.6       |
| C20—N3—Cu  | 128.30 (13) | N6—C21—C22   | 121.80 (16) |
| C16—N3—Cu  | 110.50 (13) | N6—C21—C30   | 115.75 (17) |
| C11—N4—C15 | 119.49 (18) | C22—C21—C30  | 122.44 (18) |
| C11—N4—Cu  | 122.36 (14) | C21—C22—C23  | 119.0 (2)   |
| C15—N4—Cu  | 118.14 (14) | C21—C22—H22A | 120.5       |
| C30—N5—C29 | 117.54 (18) | C23—C22—H22A | 120.5       |
| C30—N5—Cu  | 102.31 (11) | C24—C23—C22  | 119.2 (2)   |
| C29—N5—Cu  | 124.94 (14) | C24—C23—H23A | 120.4       |
| C21—N6—C25 | 118.56 (17) | С22—С23—Н23А | 120.4       |
| C21—N6—Cu  | 119.66 (11) | C23—C24—C25  | 119.25 (18) |
| C25—N6—Cu  | 121.77 (14) | C23—C24—H24A | 120.4       |
| N1—C1—C2   | 122.5 (2)   | C25—C24—H24A | 120.4       |
| N1—C1—H1A  | 118.8       | N6-C25-C24   | 122.2 (2)   |
| C2—C1—H1A  | 118.8       | N6—C25—H25A  | 118.9       |
| C3—C2—C1   | 119.0 (2)   | C24—C25—H25A | 118.9       |
| С3—С2—Н2А  | 120.5       | C30—C26—C27  | 117.9 (2)   |
| C1—C2—H2A  | 120.5       | C30—C26—H26A | 121.1       |
| C2—C3—C4   | 119.4 (2)   | C27—C26—H26A | 121.1       |
| С2—С3—НЗА  | 120.3       | C28—C27—C26  | 118.9 (2)   |
| С4—С3—Н3А  | 120.3       | C28—C27—H27A | 120.5       |

| C3—C4—C5     | 119.2 (2)   | С26—С27—Н27А | 120.5       |
|--------------|-------------|--------------|-------------|
| C3—C4—H4A    | 120.4       | C27—C28—C29  | 119.40 (18) |
| С5—С4—Н4А    | 120.4       | C27—C28—H28A | 120.3       |
| N1C5C4       | 120.9 (2)   | C29—C28—H28A | 120.3       |
| N1—C5—C6     | 115.26 (16) | N5-C29-C28   | 122.7 (2)   |
| C4—C5—C6     | 123.83 (19) | N5—C29—H29A  | 118.7       |
| N2—C6—C7     | 121.2 (2)   | C28—C29—H29A | 118.7       |
| N2—C6—C5     | 114.73 (16) | N5-C30-C26   | 123.60 (16) |
| C7—C6—C5     | 124.03 (18) | N5-C30-C21   | 114.84 (17) |
| C8—C7—C6     | 119.5 (2)   | C26—C30—C21  | 121.51 (18) |
| С8—С7—Н7А    | 120.3       | F4—B1—F3     | 110.12 (18) |
| С6—С7—Н7А    | 120.3       | F4—B1—F1     | 110.1 (2)   |
| C9—C8—C7     | 119.1 (2)   | F3—B1—F1     | 110.5 (2)   |
| С9—С8—Н8А    | 120.5       | F4—B1—F2     | 109.4 (2)   |
| С7—С8—Н8А    | 120.5       | F3—B1—F2     | 109.2 (2)   |
| C8—C9—C10    | 119.4 (2)   | F1—B1—F2     | 107.39 (18) |
| С8—С9—Н9В    | 120.3       | F8B—B2—F6B   | 111.3 (3)   |
| С10—С9—Н9В   | 120.3       | F8B—B2—F7B   | 110.6 (4)   |
| N2-C10-C9    | 121.8 (2)   | F6B—B2—F7B   | 112.2 (3)   |
| N2-C10-H10A  | 119.1       | F8B—B2—F5    | 103.0 (3)   |
| С9—С10—Н10А  | 119.1       | F6B—B2—F5    | 108.2 (3)   |
| N4—C11—C12   | 122.6 (2)   | F7B—B2—F5    | 111.2 (3)   |
| N4—C11—H11A  | 118.7       | F7A—B2—F5    | 110.5 (4)   |
| C12-C11-H11A | 118.7       | F7A—B2—F6A   | 106.7 (5)   |
| C13—C12—C11  | 118.4 (2)   | F5—B2—F6A    | 116.9 (3)   |
| C13—C12—H12A | 120.8       | F7A—B2—F8A   | 104.6 (4)   |
| C11—C12—H12A | 120.8       | F5—B2—F8A    | 115.6 (3)   |
| C14—C13—C12  | 119.3 (2)   | F6A—B2—F8A   | 101.4 (4)   |
| C14—C13—H13A | 120.3       |              |             |

### Hydrogen-bond geometry (Å, °)

| D—H···A                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |
|-----------------------------|-------------|--------------|--------------|---------|
| C3—H3A···F2 <sup>i</sup>    | 0.94        | 2.54         | 3.342 (3)    | 144     |
| C8—H8A···F2 <sup>ii</sup>   | 0.94        | 2.35         | 3.274 (3)    | 169     |
| C10—H10A…F6B <sup>iii</sup> | 0.94        | 2.49         | 3.376 (4)    | 158     |
| C13—H13A…F8B <sup>iv</sup>  | 0.94        | 2.17         | 3.063 (5)    | 158     |
| C26—H26A…F4                 | 0.94        | 2.31         | 3.191 (3)    | 155     |
| C27—H27A…F1                 | 0.94        | 2.54         | 3.303 (3)    | 138     |

Symmetry codes: (i) *x*+1, *y*-1, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) -*x*, -*y*, -*z*+1.



Fig. 1

Fig. 2

